

Galaxy Advanced Engineering, Inc.
P.O. BOX 614
Burlingame, California 94011
Tel: (650)-740-3244
Fax: (650)-347-4234
E-mail BahmanZ@AOL.COM

UGL - GRAPHICS LIBRARY

A Scientific Graphics Subroutine Library for Micro and Mini - Computers

UGL - GRAPHICS™ is developed as scientific graphic subroutine library code for Micro and
Mini - Computers at Galaxy Advanced Engineering, Inc. (GAE). The code provides a powerful
scientific graphics capability on your Windows/PC, Linux, Alpha/Open VMS, HP/UX, SUN/OS,
SGI as well as VAX/VMS computers.

For many years, engineering and scientific applications have been executed on mainframe or mid-
size computers. Very large investments have been made in this type of software and they're
supporting utilities. The changing computer environments are moving many of these applications
to the desktop, either with UNIX workstations or more powerful personal computers (PC). UGL
has been developed to be a part of this process and provide an orderly migration path by
providing similar graphics interfaces in both environments. UGL also provides expanded
capabilities, which allow extensions of existing graphics without expensive up front,
development.

The Universal Graphics Library (UGL) is a high-level FORTRAN scientific graphics library
designed to support applications in engineering, scientific, and business environments. UGL's
integrated routines allow programmers to generate graphics, charts, surfaces, contours and 2- and
3-dimensional designs, including logarithmic axes, polar coordinates, 3-D mesh-and-line plots,
and error-bar charts. Full color features are available as well.

The UGL - GRAPHICS™ is a high level FORTRAN graphics subroutine library for interactive
or batch data representation application in engineering, scientific, and business environments.
The code is a fully functional stand-alone graphics package and is a Device Independent Graphics
Library for any existing computer and their related operating system and can interface and
supports the most well-known graphics devices in the market. The package comes with all
necessary device drivers. The PC version of the code is compatible with LAHEY FORTRAN
compiler (F77L-EM32) as well as LF90, Microsoft FORTRAN PowerStation Version 1.x and
4.x. and Compaq Visual FORTRAN compiler version 5.x and 6.x. The code can run under
Windows 95/98/2000/XP and NT with its version of LF90, PowerStation and Compaq Visual
FORTRAN. This version provides OLE capability for porting your graphics output to another
windows application such as your word processing by copying your output to clip board and past
it to your applications. The code can be compiled with other FORTRAN compiler that has
virtual memory capability such as Salford. There also exist VAX/VMS, Alpha/AXP, HP/UX,
SUN/OS, and LINUX. We are presently working on version of the code to make it compatible
with Absoft Compiler for Windows and Linux.

UGL simulates CA-DISSPLA, PLOTl0, DIGLIB, NASDIG, PLOT88, GKS 0A level (limited
base), NCAR, and CalComp graphics routines for portability purposes. The most common
subset of DISSPLA routines is supported directly. In the UGL/DISSPLA compatibility mode,
most FORTRAN77/90 and 95 programs can be run with only minor modifications related to
different output devices. Approximately 90% DISSPLA calls are currently pressed and
supported by UGL graphics library. UGL is capable of simulating any other calls of DISSPLA
routines if the users do not find them among our existing routines. (Please call us with your
request on your desired routines).

The PC version of the code called UGL/PC brings mainframe capacity and result to your desktop
microcomputer. It includes all of the popular mainframe extension. As a device independent
graphics library for microprocessor, it provides a powerful graphics capability in scientific,
engineering and business application.

The PC version of UGL operating on the window operating system is compatible with Compaq
Visual FORTRAN compiler, a 32-bit compiler, and versions 5.x and6.x. This compiler with the
associated memory manager, debuggers, and related utilities provide virtually similar capabilities
as are found on the main frames and mid-size computers. MS-DOS memory limitations are
bypassed so that any calculation that could be done on the main frame can be now done on PC at
greatly reduced costs.

The same version of UGL exists for DIGITAL/UNIX workstations and Alpha/NT and Open
VMS. For other platforms and operating system call Galaxy Applied Engineering, Inc. The main
body of UGL is identical on all systems. There are some variations in output devices that are
routinely supported. For example, on UNIX systems, an X-Window driver is normally the
primary interface to the user (with a terminal interface for multi-user systems). On a PC, a
VGA/SVGA driver replaces this interface.

UGL - Graphic’s™ integrated routines allow programmers to generate graphics, chart, surfaces,
contours and 2- and 3-dimensional design, including logarithmic axes, polar coordinate, 3-D
mesh-and-line plots, and error-bar charts. The graphics library may be ordered to work without
the math-coprocessor on request, but it will perform distinguishably slower.

UGL - GRAPHICS™ includes a set FORTRAN callable routine to aid you in plotting
characters and character strings. The high-level applications include in UGL - GRAPHICS™
are: X-Y Graphics, X-Y-Z graphics, Contours, Histograms, Scatter Diagrams, Streamlines,
Vector Graphics 3-D solids, 3-D Surfaces, Cartographic Maps, Map Data Overlays and World
Map plots as well blanking capability plots.

UGL - GRAPHICS™ was developed to provide a migration path with a CA-DISSPLA, GKS,
PLOT10, CalComp and DIGLIB (from Lawrence Livermore Lab.) graphics interface in the PC
and VAX as well as UNIX environment and provides the same high graphics standards found on
the main frames using the above graphics libraries. The most common subset of CA-DISSPLA
routine (more than 900) and rest of the mentioned graphics libraries are supported directly and
any particular ones may be provided upon request. If the users have an existing code using any of
these graphics library routines within their code do not have to change their calls. The bridge that
are built with UGL - GRAPHICS™ library will distinguish these routine s and maps its own
routine against the direct porting of the user code to its new environment supported by UGL -
GRAPHICS™.

UGL includes a set of FORTRAN callable routines to aid you in plotting characters and character
strings. It implements an ANSI/ISO standard Graphical Kernel System (GKS) platform; an
ANSI/ISO standard Computer Graphics Metafile (CGM) output format; and applications that
overlay any ANSI/ISO standard GKS, which provides a device language and resolution
independent platform for graphics generation. The high-level applications included in UGL are:

• Multiple plots type:

- X-Y Graphics.
- -X-Y-Z Graphics.
- Contours.
- Histograms.
- Scatter Diagrams.
- Streamlines.
- Vector Graphs.
- 2-D and 3-D graphs and plots.
- Calendar charts.
- 3-D Solids.
- 3-D Surfaces.
- Cartographic Maps.
- Map Data Overlays.

• Extensive parameter support and control

- Area blanking control.
- Area fills with fills pattern control.
- Curve and frame thickness control.
- Color support.
- Multiple line style, including user-defined style.
- Spline and polynomial line interpolation.

• Both high and low-resolution world mapping including political boundaries.
• Legend blocks and text blocks.
• Multiple text fonts.
• Generation of plots for word processing packages such as Microsoft word and

WordPerfect.

The UGL graphics library is a general-purpose graphics package that can be used to generate
plots for most digital computer based applications. To generate a plot using UGL, the user's
application program calls the appropriate UGL subprograms. These subprograms then cause the
plot to be printed, plotted, or stored as a file image.

UGL is supplied as a set of re-locatable library files. To generate a plot using UGL, the user's
FORTRAN77/90 and 95 application program calls the appropriate UGL programs. At link time,
the requested routines are collected from the library files and loaded with the user's code. These
subprograms then cause the plot to be generated and displayed, printed, or stored as a file image.

UGL can generate graphics metafiles, which can be saved for later viewing without rerunning the
user program. The appropriate POST processors for these metafiles are supplied. There is

normally one POST for each format. For example, POSTX11 is for X-Windows release 5,
version 11 on UNIX. POSTVGA is for Super VGA (VESA) display on a PC.

UGL routines are callable within your C program on any given computing platform as well.

There are two versions of link procedures. The first is for a pure UGL code, which uses only
calls, found in this manual. The second is a DISSPLA compatibility mode linker. In this mode
many DISSPLA calls are recognized and translated internally to the associated UGL routine. The
additional routines that are processed in this manner are not documented in detail in this manual.

A sample printer queuing batch file is included. When the user tells UGL to send a file to a
printer, UGL makes an operating system call to tell the system to run a special batch procedure. It
is the function of this procedure to know the correct commands to complete this task

UGL permits almost complete host and device independence for user application software. UGL
achieves host independent via strict compatibility with the America National Standard Institute
(ANSI) standard X3.0-1978, often referred to as FORTRAN 77. This greatly reduces application
code modifications when porting programs. Internally, UGL uses "Z" and extension to avoid
name conflicts with user code. The "Z" is used with routine names and that is used with common
blocks. UGL, with the DISSPLA compatibility option, contains nearly 1000 routines; so name
conflicts with user code can be a real problem. The extensions reduce the number by a factor of
two.

The following examples are provided with their FORTRAN source codes to show the simplicity
of Universal Graphics Language.

Example 1

C **
C
 PROGRAM SHUTLE
C
C This program demonstrates a complex linear X-Y plot
C and shaded fonts.
C Original Source: NASA
C Modified: Galaxy Advanced Engineering, Inc. (GAE)
C
 DIMENSION X(7),Y(7)
 COMMON /R2D2/ KNT
C set data for x, y
 DATA X/23.,16.,12.,10.,8.,4.,0./
 DATA Y/240000.,230000.,170000.,125000.,70000.,20000.,5000./
C
C **
C
C Step 1 - initialize output device
C Allow user to choose a device interactively
 KTYPE=0
 CALL DEVICE (KTYPE,XPAGE,YPAGE)
C
C **
C
C Step 2 - define page size
C none
C
C **
C
C Step 3 - define plot axes and sub-plot area
C Set length of X and Y axis in inches for a square plot
C In UGL, xpage is always = 11 inches
 XPG = 8.5
 YPG = 5.
C Compute location of physical origin in inches
C so that plot will be centered on the page
 XRL = 0.5 * (XPAGE-XPG)
 YRL = 1.5
C Define location of physical origin relative
C to lower left corner of page
 CALL ORIGIN (XRL,YRL)
C Disable border plotting by SETSUB
 CALL NOBORD
C Define sub-plot area in terms of length of X and Y axis in
C inches (border plotting disabled by previous call to NOBORD)
C Add some color

 CALL SETSUB (XPG,YPG)
C
C add background color
C
 CALL SETCLR ('DBLUE')
 CALL FILBKG
 CALL SETCLR ('YELLOW')
C
C **
C
C Step 4 - define plot heading and labels
C Set current text height in inches as desired
 CALL CLASIC
 CALL FILCHR (90.,1,.002,1)
 CALL HRDSHD
 SIZE = 0.15
 CALL HEIGHT (SIZE)
C Set X axis label for 2-D plot
 CALL XLABEL ('MINUTES TO TOUCHDOWN',100)
C Set Y axis label for 2-D plot
 CALL YLABEL ('ALTITUDE FEET',100)
C Define plot heading
 CALL SETCLR ('GREEN')
 CALL PTITLE ('SPACE SHUTTLE REENTRY',100,2.,1)
C
C **
C
C Step 5 - draw the plot axes
 CALL INTAXS
 CALL YANGLE (0.)
 CALL YMARKS (5)
 CALL XMARKS (5)
 CALL AXES2D (25.,-5.,0.,0.,50000.,250000.)
C
C **
C
C Step 6 - draw the plot curve
C
 CALL CUBSPL
 CALL CRVWID (0.05)
 CALL MARKER (-1)
C plot curve and user defined symbols.
 CALL CURVE (X,Y,7,1)
 CALL SETCLR ('GREEN')
 CALL CRVWID (0.02)
 CALL FRAME
 CALL SETCLR ('GREEN')
 SIZE = 0.3
 CALL HEIGHT (SIZE)
 CALL TXTMSG ('Figure A-8: Reentry',100,-100.,-1.2)
C CALL SETCLR ('RED')

C CALL UGSEAL (1.)
C
C **
C
C Step 7 - end the sub-plot
 CALL ENDSUB (0)
C
C **
C
C Step 8 - end the plot
 CALL STOPLT (0)
C
C **
C
C Step 9 - close the output device
 CALL FINPLT
C If hardcopy device, print copy
 CALL HRDCPY(0)
 END
C
C **
C
 SUBROUTINE SYMDEF(I)
C
C This routine draws the shuttle at various angles.
C It is user defined symbol for plot curve.
C
 DIMENSION XD(23),YD(23),ANGLE(7),XP(10),YP(10)
 COMMON /R2D2/ KNT
 PARAMETER (CC=3.14159/180.)
C digitized data for user defined symbol
 DATA ANGLE/10.3,25.7,40.1,27.4,18.7,12.0,0.0/
 DATA XD/-.85,.70,.80,.83,.73,.63,.55,-.50,-.75,-.85,-.85,-.85,
 + -1.03,-1.03,-.85,-.50,.42,.25,-.13,-.5,.63,.53,.53/
 DATA YD/-.15,-.15,-.08,0.0,.09,.10,.20,.20,.60,.60,-.15,.12,
 + .17,-.17,-.12,-.03,-.03,.07,.07,-.03,.10,.10,.20/
C increment counter for angle data for picture symbol
 KNT=KNT+1
C scale down picture symbol
 CALL MRKSIZ (0.4)
C rotate symbol by amount in angle array in common
 CALL SYMROT (ANGLE(KNT))
C draw symbol
 CALL SETCLR ('YELLOW')
 CALL SYMCRV (XD ,YD ,11)
 CALL SYMCRV (XD(12),YD(12),4)
 CALL SYMCRV (XD(16),YD(16),5)
 CALL SYMCRV (XD(21),YD(21),3)
C set character height
 CALL HEIGHT (0.08)
C get location for center of symbol

 CALL MRKLOC (XSYM,YSYM)
C transform data to blank symbol
 THETA=CC*ANGLE(KNT)
 DO 100 I=1,10
 XP(I)=0.4*(XD(I)*COS(THETA)-YD(I)*SIN(THETA))+XSYM
 YP(I)=0.4*(XD(I)*SIN(THETA)+YD(I)*COS(THETA))+YSYM
 100 CONTINUE
 CALL BLPOLY (XP,YP,10,0.0)
C write reentry angles out (except for last one)
 IF (KNT.NE.7) THEN
 YOFF=0.0625
 IF (KNT.EQ.1) YOFF=-0.2
 CALL REALNO (ANGLE(KNT),1,XSYM+.4,YSYM+YOFF)
 CALL TXTMSR (' DEG.',100,0.,0.,3)
 END IF
 RETURN
 END
C
C **

Example 2

PROGRAM F15
C
 OPEN(10,FILE='F15.DAT',ERR=900,STATUS='OLD')
 READ(10,*) XMN,YMN,XMX,YMX
C
 KTYPE=0
 CALL DEVICE(KTYPE,XPAGE,YPAGE)
 CALL PAGE(XPAGE,YPAGE)
 CALL NOBORD
 CALL ORIGIN(0.,0.)
 CALL SETSUB(11.,8.5)
C Draw background
 CALL HRDSHD
 CALL SETCLR('DBLUE')
 CALL SETCLR('CYAN')
C
C What colors are best????
C
 CALL FILBKG
 CALL CLASIC
 CALL FILCHR(90.,1,.002,1)
 CALL SETCLR('BLACK')
 CALL HEIGHT(0.4)
 CALL TXTMSG('F-15 Eagle',100,6.61,7.41)
 CALL SETCLR('RED')
 CALL TXTMSG('F-15 Eagle',100,6.7,7.5)
C
 CALL SETCLR('GRAY')
 CALL SETCLR('MAGENTA')
 CALL SETCLR('DBLUE')
 CALL LNDWID(0.05)
 DO 444 I=1,16346
 READ(10,*,ERR=445) X1,Y1,X2,Y2
 IF(I.EQ.4722) THEN
 CALL SETCLR('CYAN')
 CALL SETCLR('DGREEN')
 CALL SETCLR('BROWN')
 END IF
 IF(I.EQ.15333) THEN
 CALL SETCLR('WHITE')
 END IF
 IF(I.EQ.6885) THEN
 CALL SETCLR('GRAY')
 CALL SETCLR('DBLUE')
 END IF
 X1=11.*X1/6000.-0.8
 X2=11.*X2/6000.-0.8
 Y1=8.5*Y1/4400.-0.8
 Y2=8.5*Y2/4400.-0.8

 CALL MOVETO(X1,Y1)
 CALL DRAWTO(X2,Y2)
 444 CONTINUE
 445 CONTINUE
 CLOSE(10)
C
 CALL SETCLR('RED')
 CALL GAESEAL(1.)
 CALL ENDSUB(0)
 CALL STOPLT(0)
 CALL FINPLT
 GO TO 999
C
 900 STOP 'INPUT FILE F15.DAT NOT FOUND'
C
 999 CONTINUE
 END

Example 3

C **
C
 PROGRAM VIEW3D
C
C This program demonstrates a 3d surface plot.
C The surface is the same as shown in 2D contour plot example.
C
C Original Source: Universal Graphics Inc. (UGI)
C
 PARAMETER (NWY=40)
 PARAMETER (NWX=50)
 DIMENSION W(NWX,NWY)
C
C define data for plot
C
 M=50
 N=40
 XM=8.
 YN=9.
 DO 1 J=1,N
 Y=8.*FLOAT(J-1)/FLOAT(N-1)+1.
 DO 1 I=1,M
 X=8.*FLOAT(I-1)/FLOAT(M-1)+1.
 W(I,J)=X+YN-Y-2.*SQRT((X-XM*.5)**2+(Y-YN*.55)**2) -
 1 6./SQRT((X-XM*.5)**2+(Y-YN*.3)**2)+3./X+3./Y
 2 -5.*EXP(-(X-XM*1.01)**2-(Y-YN*.5)**2)
 3 +5.*EXP(-(X-XM*.9)**2-(Y-YN*.9)**2)
 W(I,J)=MAX(W(I,J),-7.)
 1 CONTINUE
C
C **
C
C Step 1 - initialize output device
C Allow user to choose a device interactively
 KTYPE=0
 CALL DEVICE (KTYPE,XPAGE,YPAGE)
C
C **
C
C Step 2 - define page size
C none
C
C **
C
C Step 3 - define plot axes and sub-plot area
C Disable border plotting by SETSUB
 CALL NOBORD
C Define location of physical origin relative
C to lower left corner of page

 CALL ORIGIN (0.,0.)
 CALL SETSUB (XPAGE,YPAGE)
 CALL DUPLEX
C
C add background color
C
 CALL SETCLR ('DBLUE')
 CALL FILBKG
 CALL SETCLR ('YELLOW')
C
C generate figure number
C
 CALL HEIGHT (0.22)
 CALL TXTMSG ('Figure A-12: 3D Surface Plot',100,0.5,0.25)
C
C **
C
C Step 4 - define plot heading and labels
C
C define 3-d work area and axis
 CALL HEIGHT (0.2)
 CALL SETCLR('RED')
 CALL ZLAB3D('Z AXIS ',6)
 CALL XLAB3D('X AXIS ',6)
 CALL YLAB3D('Y AXIS ',6)
 XL=14.
 YL=10.
 ZL=8.
 CALL BOXD3D(XL,YL,ZL)
 CALL SETCLR('GREEN')
 CALL SETCLR('GOLD')
C
C **
C
C Step 5 - draw the plot axes
C
C define 3-d view point and box
C
 VPHI=120.0
 VPHI=130.0
 VTHTA=30.0
 VR=80.0
 XMIN=0.
 XSTEP=2.
 XMAX=14.
 YMIN=0.
 YSTEP=2.
 YMAX=10.
 ZMIN=-8.
 ZSTEP=4.
 ZMAX=8.

 CALL VPAN3D(VPHI,VTHTA,VR)
 CALL AXES3D(XMIN,XSTEP,XMAX,YMIN,YSTEP,YMAX,ZMIN,ZSTEP,ZMAX)
C
C **
C
C Step 6 - draw the plot curve
C
C define surface with matrix
 CALL BLK3DS
 IXSP=1
 IYSP=1
 CALL SURMAT(W ,IXSP ,M ,IYSP ,N ,0)
C
C enter 3d project loop and define 2-d plot
 CALL SETCLR('YELLOW')
 CALL PROJ3D(0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0)
 CALL INTAXS
 CALL SETSUB(XL,YL)
 CALL XLABEL(' ',0)
 CALL YLABEL(' ',0)
 CALL AXES2D(XMIN,XSTEP,XMAX,YMIN,YSTEP,YMAX)
 CALL GRID(1,1)
 CALL ENDP3D
C
 CALL SETCLR('MAGE')
 CALL PROJ3D(XL ,0.0,0.0, XL ,YL,0.0, XL ,0.0,ZL)
 CALL INTAXS
 CALL SETSUB(YL,ZL)
 CALL XLABEL(' ',0)
 CALL YLABEL(' ',0)
 CALL AXES2D(YMIN,YSTEP,YMAX,ZMIN,ZSTEP,ZMAX)
 CALL GRID(1,1)
 CALL ENDP3D
C
 CALL SETCLR('CYAN')
 CALL PROJ3D(XL,0.,0.0, XL,0.,ZL, 0.0,0.,ZL)
 CALL INTAXS
 CALL SETSUB(ZL,XL)
 CALL XLABEL(' ',0)
 CALL YLABEL(' ',0)
 CALL AXES2D(ZMIN,ZSTEP,ZMAX,XMIN,XSTEP,XMAX)
 CALL GRID(1,1)
 CALL ENDP3D
C
C **
C
C Step 7 - end the sub-plot
 CALL ENDSUB (0)
C
C **
C

C Step 8 - end the plot
 CALL STOPLT (0)
C
C **
C
C Step 9 - close the output device
 CALL FINPLT
C If hardcopy device, print copy
 CALL HRDCPY(0)
 END
C
C **

